APPROXIMATION BY DISCRETE SINGULAR OPERATORS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Uniform Approximation by Generalized Discrete Singular Operators

Here we study the approximation properties with rates of generalized discrete versions of Picard, Gauss-Weierstrass, and Poisson-Cauchy singular operators. We treat both the unitary and non-unitary cases of the operators above. We establish quantitatively the pointwise and uniform convergences of these operators to the unit operator by involving the uniform higher modulus of smoothness of a uni...

متن کامل

Statistical Approximation by Double Picard Singular Integral Operators

We first construct a sequence of double smooth Picard singular integral operators which do not have to be positive in general. After giving some useful estimates, we mainly show that it is possible to approximate a function by these operators in statistical sense even though they do not obey the positivity condition of the statistical Korovkin theory.

متن کامل

Global smoothness preservation and simultaneous approximation by multivariate discrete operators

In this article we study the multivariate generalized discrete singular operators defined on R , N ≥ 1, regarding their simultaneus global smoothness preservation property with respect to Lp norm for 1 ≤ p ≤ ∞, by using higher order moduli of smoothness. Furthermore, we study their simultaneous approximation properties. Mathematics Subject Classification (2010): 26A15, 26D15, 41A17, 41A25, 41A2...

متن کامل

Direct Approximation Theorems for Discrete Type Operators

In the present paper we prove direct approximation theorems for discrete type operators (Lnf)(x) = ∞ ∑ k=0 un,k(x)λn,k(f), f ∈ C[0,∞), x ∈ [0,∞) using a modified K−functional. As applications we give direct theorems for Baskakov type operators, Szász-Mirakjan type operators and Lupaş operator.

متن کامل

Multiscale Discrete Approximation of Fourier Integral Operators

Abstract. We develop a discretization and computational procedures for the approximation of the action of Fourier integral operators whose canonical relations are graphs. Such operators appear in many physical contexts and computational problems, for instance in the formulation of imaging and inverse scattering of seismic reflection data. Our discretization and algorithms are based on a multi-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cubo (Temuco)

سال: 2013

ISSN: 0719-0646

DOI: 10.4067/s0719-06462013000100006